
Summary

An experiment was conducted to compare programmer pro-
ductivity and defect rates for Java and C++. A modified ver-
sion of the Personal Software Process (PSP) was used to
gather defect rate, bug rate, and productivity data on C++ and
Java during two real world development projects. A bug is
defined to be a problem detected during testing or deploy-
ment. A defect is either a bug, or an error detected during
compile time. A typical C++ program had two to three times
as many bugs per line of code as a typical Java program. C++
also generated between 15% and 50% more defects per line,
and perhaps took six times as long to debug. Java was
between 30% and 200% more productive, in terms of lines of
code per minute. When defects were measured against devel-
opment time, Java and C++ show no difference, but C++ had
2 to 3 times as many bugs per hour. Statistics were generated
using Student’s t-test at a 95% confidence level. Some discus-
sion of why the differences occurred is included, but the
offered reasons have not been tested experimentally. The
study is limited to one programmer over two projects, so it is
not a definitive experimental result. The programmer was
experienced in C++, but only learning Java, so the results
would probably favour Java more strongly for equally-experi-
enced programmers. The experiment shows that it is possible
to experimentally measure the fitness of a programming lan-
guage.

Key Words

C++, Java, Programming Languages, Metrics

Background and Motivation

Much has been said and written about Java’s claimed superi-

ority to C++1, but there is no hard data to back up such claims.
The main reason that such data does not exist is that it is diffi-

cult and time consuming to perform the necessary experi-
ments.

The Personal Software Process2 (PSP) is a methodology
designed by Watt Humphrey to be used by individual soft-
ware engineer. Unlike most methodologies, PSP is an
experimentally based process and so the claims can be
tested experimentally. I used PSP for a four month C++
project in late 1996 and found that it did improve my
project estimation and code quality. Accordingly I used
PSP for my next project, which was written in Java. At
that point I realised that I had accurate productivity and
defect numbers for two projects that differed mainly in the
implementation language. Hence it was possible to experi-
mentally compare C++ and Java.

The aim of both projects was to produce commercial qual-
ity code to ship to customers. PSP was used to achieve that
goal, comparing C++ and Java was only a side effect. The
idea of comparing the languages only emerged after the
C++ project was concluded, so there are gaps in the C++
data. This experiment is therefore not definitive, rather it
points the way towards a definitive experiment. However,
this work is more robust than unsupported opinion.

Personal Software Process (PSP)

The aim of PSP is to allow individuals to “control, man-

age, and improve the way [they] work.”2 The specific aims
are to improve:

1) estimation accuracy
2) code quality
3) productivity

PSP is a methodology for individuals, not for whole cor-
porations. Although the published version has many steps
to perform and many forms to fill out, the core design
principle is simple: make careful quantitative observations
of your progress and use feedback to improve subsequent
projects. The minutes spent on every phase of a project are
tracked, as are the number of lines of code written or mod-
ified. These measures are used to predict how long it will

Comparing Observed Bug and Productivity Rates for Java and C++

Geoffrey Phipps
Spirus

gphipps@spirus.com.au

Comparing Observed Bug and Productivity Rates for Java and C++

2

take to complete future projects. All that is required is
some self discipline and management support.

Method

General

Two projects of approximately equal complexity were
specified, designed and implemented by the author using
the same software methodology. Both projects used PSP,
approximately at level 1.1. The exact projects and other
aspects of the development environment are discussed in
Section .

Specific

Both projects were quite small, so they used a waterfall
model for the overall plan, with incremental delivery for
the actual coding. Each release cycle was approximately
six weeks long. The project steps in detail were:

1) Formal requirements gathering for all the functional-
ity, resulting in a requirements document.

2) Production of a project plan identifying the pieces of
functionality to be included in each release.

3) High-level design to identify all the components,
i.e.the task breakdown. Each component was esti-
mated to take between three and five days to com-
plete.

4) A series of release cycles, each cycle having the fol-
lowing phases:

4.1) Detailed design of each component to be included
in the current release. Map each important use-case
scenario to a message trace diagram. Identify all
classes and their major methods.

4.2) Estimate the number of lines of code using histor-
ical metrics. This number is known as the
“designed lines of code” estimate.

4.3) Multiply the designed lines of code in Step 4.2 by
the developer’s personal expansion factor. The
result is the predicted number of lines. The per-
sonal expansion factor is described below.

4.4) Write the code, recording the elapsed time and
defect rates.

4.5) Update the expansion factor based on the pre-

dicted time and feature metrics as compared to the
actual results.

4.6) Use the new expansion factor to refine the esti-
mates for the next cycle.

It is important to understand the expansion factor used in
Step 4.3. It is the observed difference between the paper
design and the final implemented system. It represents the
degree of detail to which you take your design before
beginning coding. Obviously the expansion factor varies
from individual to individual. For someone who is very
careful and manages to identify all classes and methods
before they begin coding, the factor will be around 1. A
person who likes to code without much prior thought will
have a very high factor. My personal factor is 1.8, meaning
that for every line of code I identify during design, I con-
sistently write 1.8 lines during development. If you use
PSP in a consistent fashion then your expansion factor will
stabilise after several iterations. What matters is that your
expansion factor stabilises, not that it be 1.

The method used is a modification of PSP. The forms were
changed to reflect object-oriented languages, and to
streamline the data capture. Although PSP has been ported
to C++, it was originally designed for procedural lan-
guages and that heritage is still visible. For example,
defects are categorised as either “function” or “data” in the
original PSP forms. The difference between function and
data (largely) disappears in the OO paradigm, whereas
new types of defects occur because of the inheritance sys-
tem. Hence the defect categories had to be changed. The
categories used were:

1) Syntax errors not covered in other categories
2) Incorrect package use
3) Declaration errors
4) Method call errors
5) Control flow not covered in other categories
6) Class Design
7) Method Design
8) Missing Defensive Programming checks
9) Documentation

Comparing Observed Bug and Productivity Rates for Java and C++

3

10)Incorrect tool usage

As mentioned earlier, both projects used PSP, approxi-
mately at level 1.1.The elements from PSP level 2 that
were not used were:

1) Prediction intervals
2) Formal design and code reviews
3) Analysis of appraisal time and failure time

The elements from PSP Levels 2 and 3 that were used are:

1) Functional specifications
2) Operational scenario templates
3) Cyclic development strategy
4) Test plan
5) Design templates
6) Issue tracking
7) Documentation standards for all documents

The actual document formats used for items 1 through 5
differed from the PSP formats, but they contained the
same information.

The Numbers

Definitions

Lines of Code This work uses the simple definition of
a non-blank line. The reasons are discussed in
"Choice of Units".

Defect A defect is any error that causes an unplanned
change in the code. Defects include syntax errors,
logical errors, and changes in variable names. The
category does not include replacing code that was
known to be prototype code when it was written, or
changes caused by a change in the project
requirements. This is the standard PSP definition.

Bug In this work a bug is defined to be a problem
detected during test or deployment. A bug is
therefore a control flow defect or a missing feature.
The definition excludes syntax errors, type errors,
and other errors caught by the compiler.

Minute A minute of uninterrupted work. Telephone
calls, staring out the window and the like are
excluded.

Defects per Line of Code

I was learning PSP during the C++ project, and the effect
is obvious in the graph of defect rates (see Figure 1). After
the second task I reviewed my defect logs and detected
patterns in defects. By paying attention to those problem-
atic coding habits I was able to reduce the defect rate from
approximately 260 per thousand lines of code (kLoc) to
approximately 50 per kLoc. Therefore the statistical study
ignores the first two data points because I was using a dif-
ferent method. In addition, the sixth data point has been
excluded because there were problems recording the
number of lines changed. The coding rate (lines of code
per minute) was twice as high as usual, and the defect rate
half the average. The task also spanned a three week
period of leave. Although there is no solid proof, it
appears that I accidentally double-counted the number of
lines written during that subtask. Of course, the exclusion
of these data points underlines the preliminary nature of
this investigation. The final defect counts are shown in
Figure 2. All subsequent discussion will be restricted to
this set of data points, called “the relevant set.” Although
an informal examination of the graph implies a final defect
rate of around 90, it is clear that the defect rate has not sta-
bilised for C++. The mean for Figure 2 is 82 defects per
kLoc and the observed standard deviation is 25.

If we restrict our attention to bugs (errors detected during
testing or deployed usage), then the data for the relevant
C++ set is shown in Figure 3. The mean is 18 bugs per
kLoc and the observed standard deviation is 8.

The Java project was implemented after the C++ project,
and as a result the PSP methodology was already stable.
The only data point excluded is the first task, because it
was affected by the author learning Java. The graph of
defects is shown in Figure 4, the bug rates are shown in
Figure 5.

Informal examination of Figure 2 and Figure 4 seems to
reveal a final C++ defect rate of around 90 per kLoc, and a
Java defect rate of around 60 per kLoc, for a ratio to about
3 to 2. However, statistical testing provides clearer insight.

The standard method for comparing two means is to com-
pute an estimate of their difference. For small sample sizes

Comparing Observed Bug and Productivity Rates for Java and C++

4

(fewer than 30 samples) we use Student’s t-test3. For a

given confidence level (1-), the t-test defines a range

within which the difference between the means must lie.
The test assumes that both populations are normally dis-
tributed, and that they have the same standard deviation.
The two populations are defect rates for the author writing
C++, and defect rates the author writing Java. The two
activities are similar enough to assume that they have the
same standard deviation.The difference in the observed
standard deviations is caused by the smallness of the sam-
ple sizes.

The relevant means, standard deviations, and sample sizes
for the relevant sets of both C++ and Java are shown in
Table 1.

We are interested in testing at a 95% confidence limit, i.e.

when is 0.05.

Using the numbers for defects, we find that the difference
between the two means lies in the interval (9.7, 32). In
other words, we can be 95% confident that C++ has at
least 9.7 more defects per kLoc than Java, perhaps even 32
more defects per kLoc. If we take the observed mean for
Java of 61 defects per kLoc, then C++ has between 15%
and 52% more defects. Informal examination of the graph
implied a difference of about 50%. It is interesting to note
how seemingly convincing graphs have to be carefully
examined using statistics.

The bug rates can be analysed in the same way. Here the
difference between the two means lies in the interval (8.6,
15). So we can be 95% confident that C++ has between
8.6 and 15 more bugs per kLoc than does Java. Comparing

it to the base rate for Java of 6 bugs per kLoc, the differ-
ence is between 240% and 360%.

The experiment suggests that a C++ program will have
three times as many bugs as a comparable Java pro-
gram.

Defects per Hour

The same set tests can be applied to the same data, but
measuring defects per hour, rather then defects per kLoc.
The defect per hour statistics are shown in Table 2.

Clearly the C++ defect mean is very noisy, because the
standard deviation is almost the same as the observed
score. The noise is introduced by just one data point, with-
out which the main is 5.42 defects per hour and the stand-
ard deviation 2.76. However, we continue to use the same
relevant set as before.

The result for defects is that the C++ mean could be
between 0.5 below, and 6.6 above, the Java mean. In other
words, we cannot be sure which language produces fewer
defects per hour. When restricted to bugs, the C++ mean is
0.56 to 1.4 defects per hour higher, which translates to a
factor of between 2.0 and 3.5.

So Java and C++ produce the same number of total defects
per hour, but C++ has two to three times as many bugs per
hour. The first result is perhaps not surprising, given that
Java and C++ are almost identical syntactically.

Time to Fix Defects

The fact that Java’s hourly bug rate is approximately one-
third that of C++’s is not the only difference. It is also true
that problems in Java programs can be fixed faster. Table 3

Defects Bugs
No. of

samples
Mean Std

Dev Mean Std
Dev

C++ 82 25 18 8 7

Java 61 11 6 2.5 5

Table 1: Observed Defect and Bugs per kLoc

α

α

Defects Bugs
No. of

samples
Mean Std

dev Mean Std
dev

C++ 8.38 8.23 1.53 0.95 7

Java 5.35 1.82 0.56 0.25 5

Table 2: Observed Defect and Bugs per Hour

Comparing Observed Bug and Productivity Rates for Java and C++

5

shows the time taken to fix a defect according to the phase

where it was removed. The relative sizes of the numbers in
the C++ column are not surprising, it has been known
experimentally for years that the earlier in the develop-
ment cycle a bug is removed, the less time it takes.

Explaining the difference between Java and C++ is more
interesting and complicated. It is likely that the dominant
reason for the faster compile-time fixes in Java is the
change from command-line compilation to an integrated
IDE. The experiment cannot show whether the improve-
ment is speed is due to Java versus C++, or Symantec Cafe
versus emacs/make, but I suspect the environmental
change dominates.

Unfortunately the experiment did not categorise defects by
the language feature (or missing language feature) which
caused them. Hence this paper cannot make a claim such
as “Java’s lack of templates causes 17% of all errors.” Not
only would finer-grained data need to be collected, the
sample size would have to be much larger because there
are more categories.

The difference in debug times is probably linguistically
based. For various reasons the same basic technique (sim-
ple trace messages) was used to debug both C++ and Java
code. Hence the change in programming environment is
less important, and the dominant cause is the change in
programming language. The main cause is most likely
Java’s safe memory model. The hardest and most time
consuming bugs to remove in C++ are those caused by bad
pointers and other mistakes made in memory manage-
ment. Java has eliminated these errors, so it is not surpris-
ing that the mean time to fix bugs has dropped. The bug
and defect forms did not include a separate category for
memory problems, such problems were included in the
heading “control flow”. In fact, 95% of bugs were “control

flow”, with “class design” and “method design” each
accounting for another 5%. Therefore the study cannot
definitively say that C++’s memory is the cause.

Debug times include the time taken to rebuild each appli-
cation. Data for the time spent compiling was not
recorded, so no exact comparison can be made. However,
a 30 minute debug session in C++ probably included two
compiles of around three minutes each. So, if it were pos-
sible to construct a C++ compiler that could compile as
fast as a Java compiler, then the true times for C++ and
Java unit-test bug fixes would be more like 25 minutes and
15 minutes respectively. However, due to C++’s macro
preprocessor, it is not possible in general to compile C++
as fast as Java. The reason is the inability to store precom-
piled header files, because the meaning of each header file
can change completely based on macro definition passed
in on the command line.

Informally, it appears that it takes twice as long to fix a
bug in C++ than it does in Java. Combined with the triple
bug rate, it is likely that it takes 6 times as long to debug a
C++ application than a Java application. Note that this six-
fold increase has not been proven statistically, and it only
applies to the debug phase of development, not the entire
development cycle.

Productivity

Productivity is measured as lines of code per minute. The
justification for choosing this measure is given in "Choice
of Units". The productivity results for the relevant C++ set
is shown in Figure 6, the results for Java are in Figure 7.
The statistical values are shown in Table 4. Using these

numbers and the t-test, we find that Java’s mean produc-
tivity is between 0.28 and 0.95 lines of code per minute
higher than the productivity rate for C++. This is between
a 30% and 200% increase. The data is too noisy to be cer-

Phase Fixed C++ Java

Compile 6 1.5

Unit Test (Bugs) 30 15

Post-deployment 240 ?

Table 3: Minutes to Fix Defects by Phase

Data Set Mean StdDev No.
samples

C++ 0.93 0.46 7

Java 1.55 0.78 5

Table 4: Observed Productivity Statistics

Comparing Observed Bug and Productivity Rates for Java and C++

6

tain that Java is twice as productive as C++, but it is cer-
tainly better.

Choice of Units

Project “size” can be measured in many ways. The first
metric of interest to software professionals is “size,”
which we measure in thousand lines of code (kLoc). The
second metric is time. The third metric is delivered func-
tionality (scope of the external requirements). The fourth
measure is “complexity,” meaning the “difficulty of the
program to be understood by human programmers.” Com-
plexity is thought to indicate effort required for program
maintenance.

Java and C++ could be compared using all four metrics
(size, time, functionality, and complexity). This restriction
to the first two metrics, and the units used, are discussed in
the following sections.

This paper uses line counts because it is the most com-
monly used measure of software system complexity in
industry. Practising project managers and programmers
know that line counts are flawed, but line counts are
widely used and understood. If this study is to be under-
stood by those who work in software, then it must use the
de facto standard for “project size.”

Size

It is generally recognised that simple line counts are not a

reliable metric of complexity of a piece of software4. Line
counts vary according to code formatting conventions of
the developers, and also by the expressive power of the
language (consider APL versus COBOL). An arguably
more accurate measure would be to measure linguistic ele-
ments, such as statements and expressions. However, this
study counts non-blank lines because the same formatting
style was used for both projects. Therefore n statements of
Java take the same number of lines as n statements of
C++. There are no errors introduced by white space.
Grammatically based line counters for C++ are difficult to
write correctly.

Time

Time is measured using the PSP metric, which is minutes
spent on the actual task. Time spent doing other things
(attending meetings etc.) is ignored. This unit is used in
preference to simple elapsed days, because it avoids the
largest source of error - time spent on other things. It does
not account for the loss of efficiency caused by very short
interruptions.

Functionality

Measuring defects per delivered functionality is arguably
the best way to compare Java and C++. Delivered code, is,
after all, the goal of most projects. Any future work on this
study should consider functionality, but it is likely that the
fundamental results will not change, for the following rea-
sons.

If the same functionality (program requirements) are
implemented using Java and C++, then it is reasonable
(but unproven) to assume that the two programs will be
similar in size because the two languages have very simi-
lar expressive power. Hence it is reasonable to assume that
if Java produces fewer defects per kLoc than C++, then
Java will produce fewer defects per function point than
C++. The assumption that the two languages are suffi-
ciently similar enough for simple “lines of code” compari-
son to be valid has not been proven. Therefore any future
work on this study should include function point analysis
to check this reasoning.

Complexity

Line-counts (and other size metrics) do not necessarily

measure complexity. Other metrics exist4, such as class-
coupling (which measures the degree of interconnections
between classes). Most of the proposed complexity met-
rics have not been proven experimentally to predict effort
(programmer time), so they are not useful. In addition,
very few of the complexity metrics are used or understood
by software professionals.

Other Possible Sources of Error

This experiment was not conducted in a closed environ-
ment where all the variables were identified and strictly

Comparing Observed Bug and Productivity Rates for Java and C++

7

controlled. This section discusses the non-linguistic varia-
bles which probably affected the experimental results.

Generality of the Programmer and the Two Projects

The experiment used one programmer, one C++ project
and one Java project.The results can only be generalised to
“all” programmers and “all” C++ and Java projects if the
programmer is a “typical” programmer, and the applica-
tions are “typical” applications. There are no such stand-
ards, so we must resort to informal argument.

The particular programmer has nine years commercial
experience in seven companies, and two years program-
ming during a PhD thesis. Seven of these years were spent
using object-oriented languages. The programmer has
been exposed to many different programming cultures.
From personal observation the programmer claims that his
coding style is not unusual.

This paper claims that the programmer is “typical enough
for generalisation.” However, to be precise it should be
limited to programmers who are experienced with C++ but
new to Java.

The first project was a C++ metrics tool written in C++.
The code base has two major elements, the C++ parser,
and the classes that modelled the parsed C++ code. The
code was developed in traditional UNIX fashion using
emacs and make on HPUX. The parser was written using
ANLTR from the Purdue Compiler Construction Toolkit

(PCCTS7). Before starting the project I expected that pro-
ductivity and defect rates would differ markedly between
the parser code and the model code. The parser was
expected to be more difficult and therefore have higher
defect rates and lower productivity. Interestingly the
observed data showed no difference between the two sec-
tions.

The second project was a Java tool to numerically analyse
large numbers of telephone call records. It was a stand-
alone application written in Java 1.1 using Symantec Cafe.

Both applications included some parsing, although the
parser in the telephone call record application was much
simpler than the C++ parser. Both projects used files for I/

O. Both had complex internal processing. Only the Java
project had a GUI, but it was excluded from this study.
Both projects took one person three months to complete.

External Environment

The C++ project was completed in a typical software
office, shared with two other people. The Java project was
completed in a home office. The two environments are
quite different, but the experiment’s method reduces the
effect of the office environment because only time actually
spent coding is counted. All interruptions are excluded.
On the one hand, constant interruptions cause you to for-
get what you are doing when you do get back to work. On
the other hand, there is no one to ask questions of when
you get stuck. Analysis of the number of minutes worked
each day certainly showed that there were fewer interrup-
tions at home.

Development Environment

The C++ project was written using emacs and make on
Unix. The Java project was written using Symantec Cafe,
and with Java the operating system is irrelevant. The dif-
ferences in development environments are discussed in
Section .

Future Work

This experiment has many limitations. The experimental
method was being perfected at the same time as the data
was being gathered, so some of the data collected is sus-
pect and excessively noisy. The noise, combined with the
small sample size, makes it difficult to draw statistically
reliable conclusions. The method does appear sound, so a
future experiment involving two projects, each of four
months duration is being planned. The major problem is
finding two commercial projects of the correct size, of
similar difficulty, and belonging to companies who are
willing to participate in such an experiment. It is hoped to
include function point analysis as well.

Experimental Conclusion

The method appears sound, if we ascribe the current noise
to start-up effects. A longer and more careful experiment

Comparing Observed Bug and Productivity Rates for Java and C++

8

would probably answer the three questions (comparative
defect rates, bug rates, and productivity rates).

The ratio of C++ bugs-per-kLoc to Java bugs-per-kLoc is
statistically proven with a confidence level of 95% to be in
the range 2.5 to 3.5. C++ also generates between 15% and
50% more defects per kLoc. Neither language appears bet-
ter for defects per hour, but C++ produces between 200%
and 300% more bugs per hour. Java is also between 30%
and 200% more productive, in terms of lines of code per
minute. It probably takes twice as long to fix each C++
bug, but this is not statistically proven due to the effect of
differing compiler technology.

The experiment used one programmer, with one C++
project and one Java project, each of 3 months duration.
The study assumes that the applications are representative
of all applications. The programmer had seven years of
C++ experience, but was only learning Java. Therefore the
result can only safely be extrapolated to experienced C++
programmers who are learning Java. However, given that
the results favour Java, and we assume that experienced
programmers are better than inexperienced programmers,
then the results would favour Java even more markedly if
the programmer had equal experience in both Java and
C++.

It is assumed that the samples follow a normal distribu-
tion.

New programming languages appear from time to time,
but are rarely adopted. Part of the reason is due to the way
new languages are marketed, but a major reason is that we
have no way to evaluate languages. How can we know if a
new language is better? Turing Equivalence is an interest-
ing mathematical theory, but it has little predictive power
as a scientific theory of humans writing programs.
According to Turing machine theory, well-structured C++
has the same power as machine code written in binary, yet
we know that humans in practise can build much larger
systems with the former. Hence the two languages do not
have the same power, so Turing theory is a poor predictor.
This paper is an attempt to apply conduct a scientific
experiment, but the results clearly show how difficult it is
to design such experiments in practise. However, progress

in Computer Science will only occur fortuitously unless
we make greater use of the scientific method.

Acknowledgements

This work was carried out as a side effect of my normal
role as software architect and developer. Accordingly
thanks are owed to all the organisations and people who
allowed me to collect the necessary numbers, although the
analysis and paper writing was done on my own time. The
C++ project was written at Object Oriented Pty Ltd. Phil
Haynes of OOPL allowed me to use PSP and showed me
the importance of statistical analysis.

Richard Favero of Soprano Designs allowed me to con-
tinue this research on the Java project.

The reviewers provided very useful advice on statistical
methods and metric analysis.

Michael Van De Vanter of Sun Microsystems Laboratories
provided encouragement and arranged for me talk at
SMLI and other places within Sun. James Gosling of Java-
soft provided comments on the Sun talk. Lisa Stapleton

organised the chat show on JavaLive8. The participants
offered many useful suggestions.

Malcolm Atkinson of Glasgow University and Dag
Sjoberg of the University of Oslo provided useful leads to
related work. Marcia Derr and Glen Diener organised my
early talk at USWest in Boulder Colorado.

Comparing Observed Bug and Productivity Rates for Java and C++

9

Bibliography

1. George Gilder, Forbes ASAP, pp 123-130, August 25, 1997.

2. Watts S. Humphrey, A Discipline of Software Engineering, ISBN 0-201-54610-8, Addison Wesley, 1995.

3. John E. Freund and Ronald E. Walpole, An Introduction to Mathematical statistics, Prentice-Hall International,
1980.

4. S. D. Conte, H. E. Dunsmore, V. Y. Shen, Software Engineering Metrics and models, Benjamin/Cummings Pub-
lishing Company, 1986, ISBN 0-8053-2162-4

5. Function Point Counting Practises Manual (Release 4.0), International Function Point Users Group Standards,
January 1994

6. Geoffrey Phipps, “The Structure of Large C++ systems,” in Technology of Object-Oriented Languages and Sys-
tems 18, Melbourne 1995, ISBN 0-13-477200-8

7. Terence Parr, Language Translation Using PCCTS & C++, ISBN: 0-9627488-5-4

8. Geoffrey Phipps and Lisa Stapleton, and the on-line audience, JavaLive Chat Show, URL: http://developer.java-
soft.com/developer/discussionForum/transcripts-8-97/CvsJava.html

Comparing Observed Bug and Productivity Rates for Java and C++

10

Figure 1: Defect Rates for All C++ Tasks

Figure 2: Defects for Relevant C++ Tasks

Figure 3: Bugs (Test Defects) for Relevant C++ Tasks

251

287

53

102

53

30

92

54

109 108

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10 11
Task Number

53

102

53

92

54

109 108

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8
Task Number

15

29

13

28

11

15
13

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8

Task Number

B
ug

s
pe

r k
Lo

c

Comparing Observed Bug and Productivity Rates for Java and C++

11

Figure 4: Java Defects

Figure 5: Java Bugs

61

78

60

46

60

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6

Task Order

D
ef

ec
ts

 p
er

 k
Lo

c

8.7

5.5

3.3

5.5

9.4

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6

Task Order

B
ug

s
pe

r k
Lo

c

Comparing Observed Bug and Productivity Rates for Java and C++

12

Figure 6: C++ Productivity

Figure 7: Java Productivity

1.08

0.55

0.73

1.54

1.87

0.90

1.05

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 1 2 3 4 5 6 7 8

Task Number

Li
ne

s
pe

r M
in

ut
e

1.41

0.97

1.85

2.74

0.81

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 1 2 3 4 5 6

Task Order

Li
ne

s
pe

r M
in

ut
e

